Совместный приказ Министра здравоохранения Республики Казахстан от 3 апреля 2019 года № ҚР ДСМ-18 и и.о. Министра индустрии и инфраструктурного развития Республики Казахстан от 4 апреля 2019 года № 195 Об утверждении перечня измерений, относящихся к государственному регулированию

В соответствии с <u>подпунктом 2) статьи 6-3</u> Закона Республики Казахстан от 7 июня 2000 года «Об обеспечении единства измерений» **ПРИКАЗЫВАЕМ**:

- 1. Утвердить прилагаемый <u>перечень</u> измерений, относящихся к государственному регулированию.
- 2.Комитету охраны общественного здоровья Министерства здравоохранения Республики Казахстан в установленном законодательством Республики Казахстан порядке обеспечить:
- 1) государственную регистрацию настоящего совместного приказа в Министерстве юстиции Республики Казахстан;
- 2) в течение десяти календарных дней со дня государственной регистрации настоящего совместного приказа направление его на казахском и русском языках в Республиканское государственное предприятие на праве хозяйственного ведения «Республиканский центр правовой информации» Министерства юстиции Республики Казахстан для официального опубликования и включения в Эталонный контрольный банк нормативных правовых актов Республики Казахстан;
- 3) размещение настоящего совместного приказа на интернет-ресурсе Министерства здравоохранения Республики Казахстан;
- 4) в течение десяти рабочих дней после государственной регистрации настоящего совместного приказа в Министерстве юстиции Республики Казахстан представление в Юридический департамент Министерства здравоохранения Республики Казахстан сведений об исполнении мероприятий, согласно подпунктам 1), 2) и 3) настоящего пункта.
- 3. Контроль за исполнением настоящего совместного приказа возложить на курирующего вице-министра здравоохранения Республики Казахстан.
- 4. Настоящий совместный приказ вводится в действие с 11 апреля 2019 года и подлежит официальному <u>опубликованию</u>.

Министр здравоохранения Республики Казахстан

Е. Биртанов

Исполняющий обязанности Министра индустрии и инфраструктурного развития Республики К. Ускенбаев

Утвержден совместным приказом Министра здравоохранения Республики Казахстан от 3 апреля 2019 года № ҚР ДСМ-18 и и.о. Министра индустрии и инфраструктурного развития Республики Казахстан от 4 апреля 2019 года № 195

Перечень измерений, относящихся к государственному регулированию

Nº	Наименование	Метрологические требования		Примечание
	измерений с указанием	Диапазон	Предельно	
	объекта и области	измерений	допустимая	
	применения		погрешность или	
			класс точности	
1	2	3	4	5

1	Измерение температуры	от 32 до 42 °C	± 0,1 °C	
	тела человека	включительно	,	
2	Измерение артериально	го давления крови	1:	
2.1	Неинвазивное	от 40 до 250 мм рт.ст	± 3 мм рт.ст	
2.2	Инвазивное	от 0 до 400 мм рт.ст.	± 3 мм рт.ст.	
3	Измерение веса (массы) человека	от 0,5 до 15 кг включительно с выше 15 до 150 кг	± 0,01 кг ± 0,1 кг	
4	Измерение роста человека	от 30 до 200 см	± 0,5 см	
5	Измерение силы, развиваемой какой-либо группой мышц человека	от 5 до 500 даН	±5%	
6	Измерение поглощённой	і і дозы, при лучево	и ой терапии:	I
6.1	В воде, поглощённой дозы	от 0,5 до 10,0 Гр	± 3 %	при внешнем облучении
6.2	Кермы в воздухе	от 0,5 до 10,0 Гр	± 3 %	
7	Измерение поглощённой			их исследованиях:
7.1	В биологической ткани	от 5 x 10 ⁻⁶ до 0,2 Гр от 1 x 10 ⁻⁶ до 10 Гр × м ²	± 15 %	
7.2	Кермы в воздухе	от 3 x 10 ⁻⁵ до 50 Гр × см ²	± 15 %	для компьютерной рентгеновской томографии
8	Измерение интенсивнос раковины различных ча	стот при:	ьных звуковых	сигналов ушной
8.1	Воздушном звукопроведении	от 125 до 4000 Гц включительно	± 3 дБ	
		от 125 до 8000 Гц	± 1 %	Частота сигнала по воздуху
8.2	Костном звукопроведении	свыше 4000 до 8000 Гц	± 5 дБ	
		от 250 до 6000 Гц	± 1 %	Частота сигнала по кости
9	Измерение эквивалентов доз (амбиентного, направленного) на рабочих местах персонала и индивидуального эквивалента дозы для персонала	от 1 x 10 ⁻⁶ до 10 Зв	± 20 %	
	Измерение объема возд	уха в легких челов	века:	
10	•	от 0,2 до 8,0 л	±3%	
10 10.1	Вдыхаемого (выдыхаемого)	01 0,2 до 0,0 11		
	Вдыхаемого (выдыхаемого) При дыхании	от 0,4 до 12,0 л/с	± 5 %	_

	газовой дыхательной см	иеси) в нормобари	ческих условиях в	легких человека:
11.1	Кислород	от 5 до 25 %	± 1 %	
		включительно		
		свыше 25 до 100	± 3 %	
		%		
11.2	Углекислый газ	от 0 до 4 %	± 0,01 %	
		включительно		
		свыше 4 до 15 %	± 0,5 %	
11.3	Пары этанола	от 0 до 0,5 мг/л	± 0,05 мг/л	
		включительно		
		свыше 0,5 до	± 10 %	
		0,95 мг/л		
12	Измерение изменений	от - 20,0 до +	0,060,25 дптр	оптическая сила
	характеристик при	20,0 дптр		
	помощи оптико-	от 0,5 до 10,0	0,20,3 дптр	призматическое
	физических	дптр		действие
	характеристик пробных			
42	ОЧКОВЫХ ЛИНЗ	or 103 no 1010 n	+ 10.0/	
13	Измерение активности	от 10 ³ до 10 ¹⁰ Бк	± 10 %	
	радионуклидов в			
	препаратах, применяемых для			
	микробиологических			
	исследований,			
	диагностики и лечения			
	заболеваний			
14	Измерение значений	от 0 до 2 ед.	± 0,06 ед.	
	оптической плотности с	включительно	± 0,6 ед.	
	последующим	свыше 2 до 4 ед.	, _{[-}	
	пересчетом измеренного			
	значения в			
	необходимый параметр			
	в соответствии с			
	методикой			
	исследования			
15	Измерение	от 7 до 100 Вт	± 2 %	
	дозированной мощности	свыше 100 до	± 3 %	
	при физической	500 BT	± 5 %	
	нагрузки	свыше 500 до		
4.0	Managaria aaziii aariii	1000 Bt	1.2.0/	<u> </u>
16	Измерение сатурации	от 0 до 100 %	± 2 %	
17	кислорода в крови Измерение частоты	от 0,12 до 300	1 %	
''	сердечных сокращений	ог 0, 1∠ до 300 мин	1 /0	
18	Измерение частоты	мин от 0 до 150 мин ⁻¹	± 2 дых/мин	
10	дыхания	ого до 150 мин	ᅩᅩᄺᇝᄽᄢᄱ	
19	Измерение биопотенциа	IOR'	<u> </u>	<u> </u>
19.1	Мозга	от 5 до 3000 мкВ	± 1 мкВ	T
19.1	I WOOI Q	от 0,1 до 10 с	0,01 c	
19.2	Сердца	от 0,03 до 10 мВ	± 5 %	†
10.2	Сордца	от 1 до 20 мм/мВ	_ 5 /5	
II. Изм	ı іерения, проводимые в ча		 й экспертизы и оне	енке безопасности
	ества лекарственных сред		<u>-</u>	
1	Измерение массы	от 1 x 10 ⁻⁶ до	± 1 x 10 ⁻⁶ г	
	образцов ЛС и МИ,	8100 г		
	питательных сред,			
			•	•

	реактивов			
2	Измерение удельного показателя поглощения растворов образцов ЛС и МИ	от 11000 до 350 см ⁻¹	± 0,1 cm ⁻¹	
3	Измерение оптической плотности растворов образцов ЛС и МИ в ультрафиолетовой и видимой области спектра	от 0,02 до 3,0 ед.	± 1 %	безразмерная величина
4	Измерение оптического вращения, угла вращения растворов образцов ЛС и МИ	от - 90° до 90° или мрад × м²/кг или (°) × мл × м² × дм⁻1 × г⁻¹	± 0,0058°	
5	Измерение концентрации ионов водорода (рН среды) растворов образцов ЛС и МИ, питательных сред, рабочих растворов кислот и щелочей, буферов	от 0 до 20 рН	± 0,002 ед.	безразмерная величина
6	Измерение плотности растворов образцов ЛС и МИ, питательных сред, рабочих растворов кислот и щелочей, буферов	от 0,6 до 1,8 г/см ³	± 0,00003 г/см ³	
7	Измерение температурь	образцов ЛС и МІ	Й:	
7.1	Плавления	от - 50 до 1100 °C	± 0,5 °C	
7.2	Кипения	от - 50 до 1100 °C	± 0,5 °C	
7.3	Затвердевания	от - 50 до 1100 °C	± 0,5 °C	
7.4	Каплепадения	от - 50 до 1100 °C	± 0,5 °C	
7.5	Сваривания, озоления	от - 50 до 1100 °C	± 0,5 °C	
7.6	Осмоляльность растворов	от 10 до 2000 мОсмоль/кг	± 1 %	
8	Измерение показателя преломления (индекса рефракции) растворов	от 1,2 до 1,7 %	± 0,001 % ± 0,1 %	Безразмерная величина по шкале Брикса
9	образцов ЛС и МИ Измерение прочности	от 0 до 5000 Н	± 0,1 %	по школо врикос
	образцов ЛС и МИ		·	
10	Измерение давления образов ЛС и МИ находящиеся под давлением	от 0 до 40 кгс/см ² от 0 до 0,098 МПа от 640 до 2000 мм рт.ст.	± 0,23 % ± 0,03 % ± 0,144 мм рт.ст.	
11	Измерение шероховатости поверхностей образцов	от 0,04 до 12,5 мкм	± 5 %	

	І ми			1 1
12	Измерение объема	от 0 до 5000 мкл	± 1,15 %	
	жидкостей, растворов	от 0 до 2000 мл	± 0,49 %	
13	Измерение размеров	от 0 до 10 000	± 0,17 мм	
	образцов ЛС и МИ	MM		
14	Измерение толщины образцов МИ	от 0 до 150 мм	± 0,001 мм	
15	Измерение силы тока образцов МИ	от 0 до 20 А	± 1 %	
16	Измерение напряжения образцов МИ	от 0 до 1000 В	± 0,6 %	
17	Измерение сопротивления образцов МИ	от 0 до 600 Ом	± 0,5 %	
18	Измерение удельной электропроводимости растворов образцов ЛС и МИ	от 0,01 до 2000 мСм/см	± 0,01 %	
19	Измерение вязкости растворов, образцов ЛС и МИ	от 100 до 200 000 сПз от 0,1 до 2000 Па ^х с	± 1 cПз ± 1 %	
20	Измерение концентрации металлов в растворах образцов ЛС и МИ	от 1 x 10 ⁻⁷ до 25 %	± 1 %	
21	Измерение адгезии образцов МИ	от 10 до 4000 H/см²	± 2 H/cm ²	
22	Измерение скорости потока образцов ЛС и МИ	от 0 до 210 мл/мин	± 2,5 мл/мин	
23	Измерение времени отверждения образцов МИ	от 1 до 60 с	±1c	
24	Измерение размеров частиц растворов ЛС и МИ	от 0 до 8 мм	± 9 мкм	
25	Измерение степени измельченности образцов ЛС и МИ	от 0,16 до 10 мм	± 1 %	
26	Определение количественного состава активных веществ в образцах ЛС и МИ	от 0 до 100 %	± 0,5 %	
27	Определение микробиол			И В 1 Г (МЛ):
27.1	Аэробные	от 0 до 1 х 10 ⁷ КОЕ	± от 1 до 1 х 10 ⁶ КОЕ	
27.2	микроорганизмы Дрожжи, грибы	от 0 до 1 х 10⁵КОЕ	± от 1 до 1 х 10 ⁴ КОЕ	
27.3	Enterobacteriacea и др.	от 0 до 1 х 10 ³ КОЕ	± от 1 до 1 х 10 ² КОЕ	
27.4	Salmonella	отсутствие	100 %	Визуальное
27.5	Escherichia coli	отсутствие	100 %	наблюдение
27.6	Salmonella	отсутствие	100 %	<u> </u>
	L	, , ,		l

27.7	Staphylococcus aureus	отсутствие	100 %	1
27.8	Pseudomonas aeruginosa	отсутствие	100 %	
27.9	Candida	отсутствие	100 %	1
27.10	Clostridia	отсутствие	100 %	1
28	Определение	отсутствие	100 %	
	стерильности образцов	признаков роста		
	ЛС и МИ	микроорганизмов		
29	Измерение диаметра	от 10 мм	± 1 мм	
	зон подавления роста			
	микроорганизмов при			
	определении			
	антибактериальной			
	активности			
	антибиотиков методом			
30	диффузии в агар	от 10 мм	± 1 мм	
30	Измерение диаметра зоны интенсивного	OT TO MIM	I I MIM	
	роста микроорганизмов			
	при определении			
	концентрации			
	витаминов			
31	Определение	образование или	100 %	Визуальное
	бактериальных	отсутствие		наблюдение
	эндотоксинов в	твердого геля		
	образцах ЛС			
32	Определение токсиколо			T
32.1	Пирогенность	от 38,0 до 39,8	± 0,1 °C	Измерение
		°C		температуры
32.2	Токсичность	OTOV/TOTPIAO	100 %	ЖИВОТНЫХ
32.3	Раздражающее и	отсутствие от 0 до 8 баллов	100 %	Визуальное наблюдение
32.3	сенсибилизирующее	от о до о оаллов	100 /6	паотподение
	действие			
32.4	Имплантационный тест	отсутствие	100 %	
	(совместимость с			
	биотканями)			
32.5	Цитотоксичность	отсутствие	100 %	
32.6	Гемолитический тест	от 0 до 2 %	± 0,05 %	
	мерения, проводимые в с	фере санитарно-э	пидемиологическо	го благополучия
насел 1	ения Измерение концентраци	И RNAЛНЫХ PAIIIACT	B B STMOCHEDHOM 5	возпухе:
1.1	Сероводород	от 0,004 до 5,000	± 20 %	Экспресс-метод
'	(дигидросульфид)	мг/м ³	1 20 70	Окспресс-метод
1.2	Азота диоксид	от 0,02 до 1,00	± 20 %	
		MΓ/M³		
		от 0,02 до 1,4	± 18 %	Фотометрический
		MГ/M³		метод
1.3	Аммиак	от 0,02 до 10,00 мг/м³	± 20 %	Экспресс-метод
		от 0,01 до 2,5	± 25 %	Фотометрический
		мг/м ³		метод
1.4	Хлор	от 0,015 до 0,500	± 20 %	11
	'	мг/м ³		
1.5	Озон	от 0,015 до 0,050	± 20 %	
		MГ/M ³		

1.6	Фенол	от 0,003 до 0,150	± 20 %	Экспресс- метод
		мг/м ³ от 0,004 до 0,2 мг/м ³	± 25 %	Фотометрический метод
1.7	Формальдегид	от 0,005 до 0,250 мг/м³	± 20 %	Экспресс-метод
		от 0,01 до 0,3 мг/м³	± 25 %	Фотометрический метод
1.8	Кислота серная	от 0,05 до 0,50 мг/м³	± 20 %	Экспресс-метод
		от 0,005 до 3 мг/м³	± 25 %	Фотометрический метод
1.9	Хлороводород	от 0,05 до 2,50 мг/м³	± 20 %	
1.10	Трихлорэтилен	от 0,5 до 5,0 мг/м³	± 20 %	
1.11	Метилбензол (толуол)	от 0,3 до 25,0 мг/м³	± 20 %	
1.12	Бензин	от 0,75 до 50,00 мг/м³	± 20 %	
1.13	Бензол	от 0,05 до 2,50 мг/м³	± 20 %	
1.14	Бутилацетат	от 0,05 до 25,00 мг/м ³	± 20 %	
1.15	Бутан	от 30 до 200,0 мг/м³	± 20 %	
1.16	Гидрофторид (Фтороводород)	от 0,0025 до 0,2500 мг/м³	± 20 %	
1.17	Пыль	от 0,05 до 1,00 мг/м³	± 20 %	Экспресс-метод
		от 0,26 до 50 мг/м³	± 25 %	Весовой метод
1.18	Азота оксид	от 0,03 до 2,50 мг/м³	± 20 %	
1.19	Углерод (Сажа)	от 0,025 до 2,000 мг/м³	± 20 %	
1.20	Метантиол (Метилмеркаптан)	от 0,003 до 0,400 мг/м³	± 20 %	
1.21	Углерода диоксид	от 1950 до 4500 мг/м³	± 20 %	
1.22	Свинец и его неорганические	от 0,00015 до 0,02500 мг/м ³	± 20 %	Экспресс-метод
	соединения	от 0,00024 до 0,0024 мг/м³	± 25 %	Фотометрический метод
1.23	Ангидрид сернистый (Сера диоксид)	от 0,025 до 5,000 мг/м³	± 20 %	Экспресс-метод
		от 0,04 до 5,0 мг/м³	± 25 %	Фотометрический метод
1.24	Этанол (этиловый спирт)	от 2,5 до 500,0 мг/м³	± 20 %	
1.25	Проп-2ен-1-аль (Акролеин)	от 0,005 до 0,1000 мг/м³	± 20 %	
1.26	Углеводороды предельные	от 0,5 до 50,0 мг/м³	± 20 %	
1.27	Пыль	от 0,025 до 1,000	± 20 %	

[l	MГ/M³		1
1.28	Этановая кислота	от 0,03 до 2,50	± 20 %	
	(Уксусная кислота)	MΓ/M ³		
1.29	Угольная зола	от 0,01 до 2,00	± 20 %	
	теплоэлектростанции	MΓ/M³		
2	Измерение концентраци			ей зоне:
2.1	Бензол	от 2,5 до 100	± 20 %	Экспресс-метод
		MГ/M³		
2.2	Аммиак	от 10 до 400	± 20 %	
	-	MΓ/M ³	. 00.0/	4
2.3	Трихлорэтилен	от 5 до 200 мг/м ³	± 20 %	_
2.4	Медь	от 0,25 до 10,00 мг/м³	± 20 %	
		от 0,4 до 8,0	± 25 %	Фотомотриноокий
		МГ/М ³	1 23 /0	Фотометрический метод
2.5	Ди хром триоксид	от 0,5 до 20,0	± 20 %	Экспресс-метод
2.5	Ди хром триокоид	МГ/M ³	1 20 70	Окопресс-метод
		от 0,5 до 9,5	± 25 %	Фотометрический
		мг/м ³	= 20 / 0	метод
2.6	Железо	от 3 до 120 мг/м ³	± 20 %	Экспресс-метод
		от 1,5 до 15 мг/м ³	± 20 %	Фотометрический
		,		метод
2.7	Цинк	от 0,25 до 10,00	± 20 %	Экспресс-метод
		MΓ/M³		
2.8	Марганец	от 0,1 до 4,0	± 20 %	
		MГ/M³		
		от 0,025 до 1,25	± 20 %	Фотометрический
		Mr/M³	22.04	метод
2.9	Сероводород	от 2 до 200 мг/м ³	± 20 %	Экспресс - метод
2.10	Фенол	от 0,15 до 6,00	± 20 %	
2.11	Kausas	MΓ/M ³	± 20 %	-
2.11	Ксилол	от 25 до 1000 мг/м³	I 20 70	
2 12	Толуол	от 25 до 1000	± 20 %	
2.12	10319031	мг/м ³	20 70	
2.13	Сольвент-нафта	от 50 до 2000	± 20 %	1
	'	MΓ/M ³		
2.14	Формальдегид	от 0,25 до 10,00	± 20 %	
	·	MГ/M³		
2.15	Бутилацетат	от 25 до 1000	± 20 %	
		ML/W3		1
2.16	Этилена оксид	от 0,5 до 20,0	± 20 %	
		MΓ/M ³	. 00.0/	4
2.17	Масла минеральные	от 2,5 до 100,0	± 20 %	
2.40	нефтяные	MF/M ³	+ 20 %	4
2.18	Углерод (сажа)	от 2 до 80 мг/м ³	± 20 % ± 20 %	-
2.19	Свинец и его неорганические	от 0,025 до 1,000 мг/м ³	± 2U 70	
	соединения	I IVII / IVI		
2.20	Пыль с содержание	от 1 до 40 мг/м³	± 20 %	1
0	оксида кремния 10-20 %	mo io ivii/ivi	- = 0 / 3	
2.21	Пыль с содержанием	от 1 до 40 мг/м³	± 20 %	1
	оксида кремния более			
	70%]
2.22	Пыль металлическая	от 1 до 40 мг/м³	± 20 %	

Пыль древесная	от 3 до 120 мг/м ³	± 20 %	
-			
•			
•			
•	ΜΓ/M ³		
	от 0,5 до 5,0	± 25 %	Фотометрический
	MΓ/M ³		метод
Пропан-2-он (ацетон)	от 100 до 4000	± 20 %	Экспресс-метод
. , ,	MΓ/M³		
Этанол (этиловый	от 500 до 20000	± 20 %	
спирт)	MΓ/M³		
Ацетальдегид (этаналь)	от 2,5 до 100,0	± 20 %	
,	MΓ/M³		
Щелочи едкие	от 0,25 до 10,00	± 20 %	
	ΜΓ/M ³		
	от 0,25 до 5,0	± 25 %	Фотометрический
	MΓ/M³		метод
Канифоль	от 0,5 до 50 мг/м ³	± 25 %	
Натрий азотистокислый	от 0,05 до 0,4	± 25 %	
•	MΓ/M³		
Аммоний хлористый	от 2 до 20 мг/м ³	± 20 %	
Ацетальдегид	от 0,4 до 6,4	± 25 %	
	MΓ/M³		
Серы диоксид	от 5 до 50 мг/м ³	± 25 %	
Никель	от 0,025 до 1,25	± 20 %	
	MΓ/M³		
Измерение параметров	воздушной среды,	микроклимата в жі	илых,
			ных зданиях,
•			
Температура воздуха	от - 40 до 85 °C	· · · · · · · · · · · · · · · · · · ·	
		диапазоне от - 10	
		до 50°C	
		± 0,5 °С в	
		± 0,5 °C в диапазоне от - 40	
		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50	
Отпоситольног	ot 5 no 00 %	± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C	
Относительная	от 5 до 90 %	± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при	
Относительная влажность воздуха	от 5 до 90 %	± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ±	
влажность воздуха		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C	
влажность воздуха Скорость воздушного	от 5 до 90 % от 0,1 до 20 м/с	± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05	
влажность воздуха		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с	
влажность воздуха Скорость воздушного		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от	
влажность воздуха Скорость воздушного		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от 0,1 до 0,5 м/с	
влажность воздуха Скорость воздушного		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от 0,1 до 0,5 м/с V2= (0,1 + 0,05	
влажность воздуха Скорость воздушного		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от 0,1 до 0,5 м/с V2= (0,1 + 0,05 Vx) м/с	
влажность воздуха Скорость воздушного		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от 0,1 до 0,5 м/с V2= (0,1 + 0,05	
влажность воздуха Скорость воздушного		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от 0,1 до 0,5 м/с V2= (0,1 + 0,05 Vx) м/с в диапазоне от 0,5 до 2 м/с V3=	
влажность воздуха Скорость воздушного		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от 0,1 до 0,5 м/с V2= (0,1 + 0,05 Vx) м/с в диапазоне от	
влажность воздуха Скорость воздушного		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от 0,1 до 0,5 м/с V2= (0,1 + 0,05 Vx) м/с в диапазоне от 0,5 до 2 м/с V3= (0,5 + 0,05 Vx) м/с	
влажность воздуха Скорость воздушного потока в воздухе		± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от 0,1 до 0,5 м/с V2= (0,1 + 0,05 Vx) м/с в диапазоне от 0,5 до 2 м/с V3= (0,5 + 0,05 Vx) м/с в диапазоне от 2 до 20 м/с	
влажность воздуха Скорость воздушного	от 0,1 до 20 м/с	± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от 0,1 до 0,5 м/с V2= (0,1 + 0,05 Vx) м/с в диапазоне от 0,5 до 2 м/с V3= (0,5 + 0,05 Vx) м/с в диапазоне от 2	
влажность воздуха Скорость воздушного потока в воздухе	от 0,1 до 20 м/с	± 0,5 °C в диапазоне от - 40 до - 10 °C и от 50 до 85 °C ± 3,0 % при температуре (25 ± 5) °C V1= (0,05 + 0,05 Vx) м/с в диапазоне от 0,1 до 0,5 м/с V2= (0,1 + 0,05 Vx) м/с в диапазоне от 0,5 до 2 м/с V3= (0,5 + 0,05 Vx) м/с в диапазоне от 2 до 20 м/с 0,13 кПа (2,3 мм	
	Пыль мучная Пыль зерновая Пыль цементная Кислота серная Пропан-2-он (ацетон) Этанол (этиловый спирт) Ацетальдегид (этаналь) Щелочи едкие Канифоль Натрий азотистокислый Ацетальдегид Серы диоксид Никель Измерение параметров вадминистративных, обще	Пыль мучная от 3 до 120 мг/м³ Пыль зерновая от 2 до 80 мг/м³ Пыль цементная от 4 до 160 мг/м³ Кислота серная от 0,5 до 20,0 мг/м³ Пропан-2-он (ацетон) от 100 до 4000 мг/м³ Этанол (этиловый спирт) от 500 до 20000 мг/м³ Ацетальдегид (этаналь) от 2,5 до 100,0 мг/м³ Щелочи едкие от 0,25 до 10,00 мг/м³ Канифоль от 0,5 до 50 мг/м³ Натрий азотистокислый от 0,05 до 0,4 мг/м³ Аммоний хлористый от 2 до 20 мг/м³ Ацетальдегид от 0,4 до 6,4 мг/м³ Серы диоксид от 5 до 50 мг/м³ Никель от 0,025 до 1,25 мг/м³ Измерение параметров воздушной среды, административных, общественных помещ производственных помещениях в рабочей	Пыль мучная от 3 до 120 мг/м³ ± 20 % Пыль зерновая от 2 до 80 мг/м³ ± 20 % Пыль цементная от 4 до 160 мг/м³ ± 20 % Кислота серная от 0,5 до 20,0 мг/м³ ± 20 % Кислота серная от 0,5 до 5,0 мг/м³ ± 25 % Пропан-2-он (ацетон) от 100 до 4000 мг/м³ ± 20 % Этанол (этиловый спирт) от 500 до 20000 мг/м³ ± 20 % Ацетальдегид (этаналь) от 2,5 до 100,0 мг/м³ ± 20 % Мг/м³ от 0,25 до 10,00 мг/м³ ± 20 % Канифоль от 0,25 до 5,0 мг/м³ ± 25 % Канифоль от 0,5 до 50 мг/м³ ± 25 % Натрий азотистокислый от 0,05 до 0,4 мг/м³ ± 25 % Аммоний хлористый от 2 до 20 мг/м³ ± 25 % Ацетальдегид от 0,4 до 6,4 мг/м³ ± 25 % Серы диоксид от 5 до 50 мг/м³ ± 25 % Никель от 0,025 до 1,25 мг/м³ ± 20 % Измерение параметров воздушной среды, микроклимата в жи административных помещениях в рабочей зоне: Температура воздуха от - 40 до 85 °C ± 0,2 °C в

4	Измерение оптической	от 0,0 до 1,70 Б	1,0 кПа (7,6 мм рт.ст.) при температуре от - 20 до 0 °C от ± 0,030 до ±	
	плотности и определение концентрации веществ в водных растворах фотоколориметрическим методом		0,150 Б	
5	Измерение мощности экспозиционной дозы	от 0,010 до 9,999 Мр/ч	± 15 %	режим измерение
	гамма излучения	от 0,1 до 1 x 10⁴ мин ⁻¹ x см ⁻²	± 30 %	режим поиск
		от 0,05 до 100 мкЗв/ч	± 30 %	Альфа-бета блока
6	Измерение плотности по излучения:	отока альфа- бета	частиц, гамма и ре	нтгеновского
6.1	Альфа-частиц и бета - частиц	от 1,0 до 1 × 10⁵ част/см² мин	± 20 %	
6.2	МЭД гамма-излучения	от 0,05 до 3 × 10 ² мкЗв/ч	± 15 %	
6.3	ЭД гамма-излучения	от 0,1 до 1 × 10 ⁸ мк3в	± 15 %	
6.4	Рентгеновского измерения МЭД	от 0,05 до 1 × 10 ⁶ мк3в	± 20 %	
6.5	ЭД	от 0,1 до 1 × 10 ⁸ мкЗв/ч	± 20 %	
6.6	Альфа-частиц бета - частиц	от 1,0 до 10⁵ част/см²мин	± 20 %	
7	Измерение суммарной альфа, бета активности	от 0,05 до 1000 Бк/кг при объеме пробы не менее 1 дм ³	± 15 %	Альфа
	14	от 0,1 до 3000 Бк	± 20 %	Бета
8	Измерение мощность МЭД рентгеновского и гамма излучения	от 0,1 до 2000 мк3в/ч	Погрешность измерения ЭД ± 15 % Дополнительные погрешности измерений МЭД: - при изменении температуры от - 40 ° С до 60 ° С ± 10 %; - при относительной влажности окружающего воздуха 98 % при 35 ° С ± 10 %; - при изменении напряжения питания от номинального	

9	Измерение	от 0,1 мк³в/ч до	значения до крайних значений напряжения ± 10 %; - при воздействии магнитного поля напряженностью 400 A/м ± 5 %; - при воздействии радиочастотных электромагнитных полей напряженностью 100 B/м ± 5 % ± (25+5/A _x)	А _х численное
	эквивалентной амбиентной дозы нейтронного излучения и МД	0,1 Зв/ч от 0,1 мк³в до 1,0 Зв		значение измеренной величины
10	Измерение плотности по излучение:	отока альфа, бета,	гамма частиц и рен	ІТГЕНОВСКОЕ
10.1	МД непрерывного рентгеновского и гамма-излучения диапазон	от 50 н³Зв/ч до 10 Зв/ч	± 15 %	непрерывного и кратковременно действующего непрерывного излучения
10.2	МД гамма-излучения	от 50 н³Зв/ч до 10 Зв/ч	± 30 %	в режиме измерения импульсного излучения
10.3	МД кратковременно действующего непрерывного излучения в диапазоне	от 5 мкЗв/ч до 10 Зв/ч	± 15 %	
10.4	Гамма и импульсного излучения	от 10 н3в до 10 3в	± 20 %	
11	Измерение ЭРОА радона	в в воздухе, воде,	почве:	
11.1	ЭРОА радона	от 1 до 1,0 × 10 ⁶ Бк/м ³	± 30 %	
11.2	ЭРОА торона	от 0,5 до 1,0 × 10⁴ Бк/м³	. 00 0/	
11.3	Объемная активность радона 222	от 0,001 до 500 Бк/м ² ×с	± 20 %	Эксхаляция радона
		от 1 до 15000 Бк/л от 1 до 15000	± 30 %	в воде в почвенном
		Бк/л от 10 до 100000 Бк/м ³		воздухе в воздухе жилых и производственных помещений
12	Измерение суммарной альфа, бета активности	от 0,01 до 1000 Бк	± 15 %	Альфа
	радионуклидов в счетных образцах	от 0,1 до 3000 Бк	± 15 %	Бета
13	Измерение удельной акт радионуклидов:	гивности гамма, бе	ета, альфа излучаю	щих

I [1 //	l 4 5 402 5	l . 45 0/	Ī
	Удельный активности	от 1,5 × 10 ² до 5	± 15 %	
1	альфа-излучающих	× 10⁵ Бк/кг²		
14	радионуклидов в пробах Измерение плотности по	тока бота изпушон	 	Mioniae.
14.1	Диапазон измерения	от 0,1 до 1 ×	± (20 + 8 / A _x) %	гучения.
14.1	альфа излучения	10⁴мин ⁻¹ ×см ⁻²	1 (20 1 0 / Ax) /0	
14.2	Диапазон измерения	от 10 до 1 ×	± (20 + 8 / A _x) %	
17.2	бета излучения	10⁵мин ⁻¹ ×см ⁻²	± (20 · 0 / / \x) /0	
14.3	Диапазон измерения	от 0,1 мкЗв до 10	± (15 + 8 / A _x) %	A _x - численное
	эквивалента дозы	3в	_ ('	значение
				измеренной
				величины
15	Измерение непрерывной	от 0,1 до 2000	± 20 %	
	мощности	мкЗв/ч		
	эквивалентной дозы	от 0,01 до 9999		
		мЗв		
16	Измерение удельной акт радионуклидов:	гивности альфа и	гамма-бета излучан	ощих
16.1	Удельный активности	от 1,5 × 10 ² до 5	± 15 %	
. 5. 1	альфа-излучающих	× 10⁵ Бк/кг	, ,	
	радионуклидов			
16.2	Измерение	от 0,1 до 5 × 10 ⁴	± 20 %	альфа
	эквивалентной дозы	мин ⁻¹ × см ⁻²		,
	гамма-нейтронного	от 10 до 3 × 10⁴		бета
	излучения в воздухе	от 0,1 до 10 мкЗв		гамма
16.3	Метод электронного	от 9,2 до 9,5 ГГц	не более ± 0,15 %	
	парамагнитного			
	резонанса для			
	выявления			
	радиационно-			
	обработанных			
	продуктов, содержащих			
16.4	целлюлозу Измерение для	от 9,2 до 9,5 ГГц	не более ± 0,15 %	
10.4	регистрации спектров	от 9,2 до 9,5 гг ц	He 001166 ± 0,10 /0	
	электронного			
	парамагнитного			
	резонанса твердых и			
	жидких веществ,			
	содержащих			
	парамагнитные центры в			
4.5	воздухе	= 0	0.0= 0/	
16.5	Измерение энергии	от 50 до 2100	± 0,07 %	
	гамма квантов и	кэВ		
	активности гамма			
	излучающих			
16.6	радионуклидов воздухе Измерение гамма, бета	от 50 до 3000	± 20 %	Гамма
10.0	излучения контроля на	кэВ		i aiviivia
	промышленных	от 150 до 3500	± 30 %	Бета
	предприятиях	кэВ	- 55 /5	
		от 0,1 до 9999	± 15%	
		мкЗв/ч		
16.7	Измерение гамма	от 0,03 до 300	± 20 %	
	рентген излучения в	мЗв/ч		

	воздухе			
17	Измерение энергетическ	ой освещенности:		•
17.1	Измерение	от 10 до 200000	± 15%	
	освещенности	лк		
17.2	Измерение	от 0 до 400 Вт/м²	±8%	
	энергетической	от одо 100 В 1/11		
	освещенности			
18	Измерение уровня шума	от 20 до 150 дБА	± 1 дБА	
10	, ,,		I I ДDA 	
	в местах нахождения	от 22 до 150 дБС		
40	людей	от 30 до 150 дБ	. 4 - 5 4	
19	Измерения уровней	от 20 до 150 дБА	± 1 дБА	
	звукового давления в	от 22 до 150 дБС		
	октановых полосах со	от 30 до 150 дБ		
	среднегеометрическими			
	частотами 31,5; 63; 125;			
	250; 500; 1000; 2000;			
	4000; 8000 Гц			
20	Измерение параметров	от 0,1 до 25 В/м	± 20 %	
	электрического поля			
21	Измерение параметров	от 80 мА/м до	± 20 %	
	магнитного поля	15,9 А/м		
22	Измерение плотности	от 300 МГц до	± 20 %	
	потока энергии	300 ГГц		
	электромагнитного поля	·		
23	Измерение	от 0,01 до 100	± 20 %	электрическое
	напряженности поля	кВ/м		поле
	электромагнитной	от 0,1 до 1800	1	магнитное поле
	промышленной частоты	А/м		marining negre
24	Измерение напряжения		Habarak araktakla	0770
	I MISINICUCTURE HALLDAMETINA		паводок электоиче	CIBA:
				CIBa:
24.1	Напряженность	от 0,01 до 100	± 20 %	Ства:
24.1	Напряженность электрического поля	от 0,01 до 100 кВ/м	± 20 %	ества.
	Напряженность электрического поля Напряженность	от 0,01 до 100 кВ/м от 0,1 до 1800		ества.
24.1	Напряженность электрического поля Напряженность магнитного поля	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м	± 20 % ± 20 %	
24.1	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в х	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра	± 20 % ± 20 % ативных, обществе	енных
24.1	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в обществ	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра	± 20 % ± 20 % ативных, обществе	енных
24.1 24.2 25	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в общество рабочей зоне:	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр	± 20 % ± 20 % ативных, обществе оизводственных п	енных
24.1	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в общество рабочей зоне: Измерение вибрации	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра	± 20 % ± 20 % ативных, обществе	енных
24.1 24.2 25 25.1	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в обществи рабочей зоне: Измерение вибрации общая	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб	енных
24.1 24.2 25	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в обществи рабочей зоне: Измерение вибрации общая Измерение вибрации	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр	± 20 % ± 20 % ативных, обществе оизводственных п	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в обществи рабочей зоне: Измерение вибрации общая Измерение вибрации локальная	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в х помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в обществи рабочей зоне: Измерение вибрации общая Измерение вибрации локальная	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в х помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в х помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	нных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в х помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности электрического поля	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в х помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты,	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты, возбуждаемого вблизи	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты, возбуждаемого вблизи электроустановок	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в х помещениях, в обществе рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты, возбуждаемого вблизи электроустановок высокого напряжения	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1 25.2 25.3	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в х помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты, возбуждаемого вблизи электроустановок высокого напряжения промышленной частоты	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц от 0,01 до 300 В F от 48 до 52 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб ± 20 %	енных
24.1 24.2 25 25.1 25.2	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты, возбуждаемого вблизи электроустановок высокого напряжения промышленной частоты Измерение плотности	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администра енных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц от 0,01 до 300 В F от 48 до 52 Гц	± 20 % ± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб	енных
24.1 24.2 25 25.1 25.2 25.3	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты, возбуждаемого вблизи электроустановок высокого напряжения промышленной частоты Измерение плотности потока энергии	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администраенных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц от 0,01 до 300 В F от 48 до 52 Гц	± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб ± 20 %	енных омещениях в
24.1 24.2 25 25.1 25.2 25.3	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты, возбуждаемого вблизи электроустановок высокого напряжения промышленной частоты Измерение плотности потока энергии Измерения напряженности потока энергии	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администраенных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц от 0,01 до 300 В F от 48 до 52 Гц	± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб ± 20 % нистративных, обш	енных омещениях в
24.1 24.2 25 25.1 25.2 25.3	Напряженность электрического поля Напряженность магнитного поля Измерение вибрации в и помещениях, в общество рабочей зоне: Измерение вибрации общая Измерение вибрации локальная Измерение среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты, возбуждаемого вблизи электроустановок высокого напряжения промышленной частоты Измерение плотности потока энергии	от 0,01 до 100 кВ/м от 0,1 до 1800 А/м килых, администраенных зданиях, пр от 1,6 до 1000 Гц от 8 до 1250 Гц от 0,01 до 300 В F от 48 до 52 Гц	± 20 % ативных, обществе оизводственных по ± 1 Дб ± 1 Дб ± 20 % нистративных, обш	енных омещениях в

26.1	Напряженности	от 0,01 до 300	± 20 %	
	переменного	мГц		
	электрического поля			
26.2	Напряженности	от 0,5 до 1 x 10 ⁷	± 20 %	
	переменного магнитного поля	Гц		
26.3	Плотности потока энергии	от 0,3 до 300 ГГц	± 20 %	
26.4	Измерение напряжения	от 0,3 до 180	± 20 %	
	электростатического поля	кВ/м		
26.5	Измерение параметров шума в свободном и диффузном звуковых полях и параметров вибрации	от 22 до 140 дБ от 2 до 18000 Гц	0,5 Дб	
26.6	Измеритель напряженности поля	от 5 Гц до 400 кГц	± 20 %	
27	Измерения в приточно-в		ции в жилых, адмиі	нистративных,
	общественных помещен помещениях в рабочей з		ных зданиях, произ	водственных
27.1	Вентиляция	от 0,1 до 30 м/с	± 0,1 м/с	
27.2	Температура воздуха	от - 50 до + 100 °C	± 0,5 °C	
27.3	Измерение уровней	от 10 ⁻⁸ до 10 ⁻⁴ от	± 20 %	
	лазерного излучения	0,48 до 1,06 мкм		
27.4	Измеритель	от 0,01 до 100	± 20 %	электрического
	напряженности поля	кВ/м		ПОЛЯ
	промышленной частоты	от 0,1 до 1800 А/м		магнитного поля
27.5	Измерение напряжения электростатического поля	от 0,3 до 180 кВ/м	± 20 %	
28	Измерение воздухопроницаемости в легкой промышленности	от 4,0 до 2080 дм ³ /м ² ×с	± 1,0 дм ^{3/} м ² ×с	
29	Определение индекса токсичности в игрушках и полимерных материалов	от 2 до 100 мкм	± 1 мкм	
30	Биологическая проба из раствора для инъекций, на животных для определения пирогенных веществ	от 25 до 60°C	± 0,4 %	
31	Определение	254/365 нм	± 1 %	
	концентрации Тиурама			
	водных вытяжек из			
	материалов различного			
20	Состава	 	DODO KOTOCK TOTA	0045050514555
32	Определение концентра		среде колясок, вело ± 20 %	осипедов и т.д.:
32.1	Формальдегида	от 0,01 до 0,22 мг/м ³		
32.2	Фенола	от 0,004 до 0,2 мг/м ³	± 25 %	

33	Измерение	107 °C	± 0,1 %	
	гигроскопичности из			
	материалов различного			
	состава			
34	Прочность растяжения	от 0,06 до 3 кН	± 1,0 %	
	упаковочных			
	материалов			
35	Измерение	от 320 до 900 нм	± 1 %	в спектральном
	коэффициентов	СКПН от 1 до 99		диапазоне
	пропускания и	%		
	оптических плотностей			
	прозрачных жидкостных			
	растворов, а также			
	измерения скорости			
	изменения оптической			
	плотности при			
	определение мутности в			
	воде			Į
36	Измерение массовой ко	нцентрации неорга	анических и органич	ческих примесеи в
36.1	воде и растворах:	o - 0 02 - 0 5	± 31 %	I
30.1	Формальдегид	от 0,02 до 0,5 мг/л	I 31 70	
36.2	Бор	от 0,05 до 5,0	± 10 %	
30.2	Бор	01 0,03 до 3,0 мг/л	1 10 /0	
36.3	Фенолы	от 0,0005 до 25	± 10 %	
30.3	Фенолы	мг/л	10 /0	
36.4	Нефтепродукты	от 0,005 до 50,0	± 25 %	
30.4	Пефтепродукты	мг/л	1 23 /0	
36.5	Химическое	от 5 до 800	± 14 %	
00.0	потребление кислорода	мгО ₂ /дм ³		
36.6	АПАВ	от 0,025 до 2	± 20 %	
		мг/дм ³		
36.7	Алюминий	от 0,01 до 5,0	± 20 %	
		мг/дм³		
37	Измерение оптической г	лотности раствор	ов исследуемых ве	еществ:
37.1	Цветность	от 0 до 70 °C	± 50 %	
37.2	Аммиак	от 0,1 до 3,0	± 15 %	
		мг/дм³		
37.3	Нитриты	от 0,003 до 0,3	± 25 %	
		мг/дм³		
37.4	Нитраты	от 0,1 до 1,0	± 15 %	
		мг/дм³		
37.5	Сульфаты	от 2,0 до 50	± 10 %	
		мг/дм³		
37.6	Полифосфаты	от 0,005 до 0,8	± 30 %	
	126	мг/дм³	. 05.0/	
37.7	Железо общее	от 0,05 до 2,0	± 25 %	
07.0	NA	мг/дм³	. 05.0/	
37.8	Марганец	от 0,01 до 5	± 25 %	
07.0	NA	мг/дм³	. 05.0/	
37.9	Медь	от 0,02 до 0,5	± 25 %	
07.40	A	мг/дм³	1.45.0/	
37.10	Фтор	от 0,05 до 1,0	± 15 %	
27 44	Молиблон	мг/дм³	+ 25 %	
37.11	Молибден	от 0,0025 до 0,08	± 25 %	

		Мг/дм³	İ			
38	Измерение рН среды в	от 0 до 14 ед. рН	± 50 %			
	водных растворах	'''				
39	Измерение в пиве	от 0 до 12 %	± 0,007 %			
	крепости, массовой		,			
	доли двуокиси углерода,					
	экстракта начального					
	сусла в пиве и пищевой					
	продукции					
40	Определение массовой	от 0 до 100 %	± 0,2 %			
	доли влаги в пищевой					
	продукции					
41		Измерение массовой доли жира, COMO, массовой доли воды, плотности в				
41.1	молоке в пищевой прод		1 + 0 1 0/	T		
	Массовая доля жира	от 0 до 10 %	± 0,1 %			
41.2	COMO	от 6 до 12 %	± 0,2 %			
41.3	Плотность	от 1000 до 1040	± 0,3 %			
40	Marranaura paparura	ΚΓ/M ³	1025 5			
42	Измерение взвешивания	от 0 до 3000 г	± 0,25 г			
	массы предметов, материалов, сыпучих и					
	жидких веществ в					
	пищевой продукции					
43	Измерение хлорорганич	<u> </u> еских пестицилов	В ВОЛЕ. В ПОЧВЕ И В	пролуктах		
	питания:	оских постицицов	э ээдэ, э но нээ н э			
43.1	α, β, γ,-изомеры ГХЦГ	от 0,005 до 2,0	± 20,0 %			
43.2	ДДТ и его метаболитов	мг/кг или мг/дм ³				
43.3	Дикофол					
43.4	Гептахлор	1				
43.5	Альдрин	1				
43.6	Гексахлорбензол	1				
44	Измерение фосфороорг	анических пестиц	идов в воде, в почв	е и в продуктах		
	питания	•	,	1 . 3		
44.1	Карбофос	от 0,5 до 3,0 мкг	± 0,8 %			
44.2	Метафос					
44.3	Хлорофос					
44.4	Антио	1				
44.5	Дихлорфос	1				
44.6	Актеллик	1				
44.7	Диазинон	1				
44.8	Хлорпирифос	1				
44.9	Фосфамид	1				
45	2,4 Д	от 0,002 до 0,1	± 10 %	1		
		мг/кг				
45.1	Феноксапроп-п-этил	от 0,0003 до 0,2	± 10 %			
		мг/кг				
45.2	Метсульфурон - метил	от 0,003 до 1,0	± 10,5 %			
		мг/кг				
45.3	Карбендазим	от 0,025 до 0,5	± 10,5 %			
		МКГ				
45.4	Тритиконазол	от 0,02 до 0,5	± 20 %			
		мг/кг				
45.5	Фипронил	от 0,0005 до 0,1	± 10 %			
		мг/кг				

45.6	ТМТД (тирам)	от 0,01 до 0,5 мг/кг	± 7 %		
45.7	Дифлубензурон	от 0,02 до 0,05 мг/кг	±7%		
46	Синтетические пиретроиды в воде, в почве и в продуктах питания:				
46.1	Амбуш	от 0,005 до 0,5	± 10 %		
46.2	Децис	мг/кг			
46.3	Каратэ				
46.4	<u> </u>				
46.5	СумиАьфа				
47	Симм-триазиновые в во	де, в почве и в пр	одуктах питания:		
47.1	- Атразин	от 0,01 до 0,04	± 10 %		
47.2	Прометрин	мг/кг			
47.3	Симазин				
47.4	Трефлан				
48	Измерение нитрат ионов	от 36 до 9188	± 0,05 %		
	растениеводческой	мг/кг			
	продукции				
49	Измерение массовой ког	нцентрации в соко			
49.1	Аскорбиновая кислота	от 5 до 1000	± 20 %		
		мг/дм³ (млн ⁻¹)			
49.2	Винная кислота	от 0,10 до 15 г/дм³	± 13 %		
49.3	Яблочная кислота	от 0,10 до 25,00 г/дм ³	± 19 %		
49.4	Лимонная кислота	от 0,10 до 0,50 г/дм ³			
49.5	Янтарная кислота	от 0,05 до 1,0 г/дм³			
49.6	Молочная кислота	от 0,05 до 1,0 г/дм³			
49.7	Патулин	от 10 до 75	± 15 %		
	-	мкг/дм ³			
49.8	Фумаровая кислота	от 0,005 до 0,5 г/дм³	± 25 %		
49.9	Сорбиновая кислота и	от 10 до 1500	±9%		
	бензойная кислота	млн ⁻¹ вкл			
50	Измерение массовой ког			дукции:	
50.1	Меламин	от 1,0 до 100 мг/кг	± 5 %		
50.2	Бензойная кислота	от 50 до 2000 млн ⁻¹ (мг/кг) включительно	± 23 %		
50.3	Сорбиновая кислота	от 1 до 1000 млн ⁻ ¹ (мг/кг) включительно			
50.4	Красители (желтый «солнечный закат», тартразин, Понсо 4R, Азорубин,	от 10 до 200 мг/дм ³ включительно	± 57 %		
<u> </u>	Индигокармин)	II IV HORIATION			
51 51.1	Объемная доля в спирти Метилового спирта	от 0,0001 до 0,05	± 20 %		
51.2	Токсичных	% от 0,5 до 10,0	-		
J1.Z	LIONOMINION	гого,о до 10,0			

	мышьяка, ртути в товарах бытовой химии	мг/дм³		
63	Объемная доля меди, никеля в масличных культурах	от 0,05 до 5 мг/дм³	± 50 %	
64	Объемная доля хрома в консервах	от 0,1 до 5 мг/дм ³	± 38 %	
65	Измерение массовой концентрации ионов кадмия и свинца пищевых продуктах	от 0,001 до 50 мг/дм³	± 42 %	

Примечание:

мм. рт.ст - миллиметр ртутного столба;

см - сантиметр;

кг - килограмм;

даН - декаНьютон;

Гр - Грей;

Гц - Герц;

л - литр;

л/с - литр в секунду;

% -процент;

‰ - промилле;

мг/л- миллиграм на литр;

дптр - диоптрия;

Бк -Беккерель;

Вт - Ватт;

Мин - минута;

мкВ- микровольт;

мВ- милливольт;

мм/мВ - миллиметр на милливольт;

с - мекунда;

г - грамм;

мрад - мега радиан;

мл x м 2 - миллилитр на метр в квадрате;

г/см³ - грамм на сантиметр в кубе;

°C - градус цельсия;

мОсмоль/кг - осмоляемость на киллограм;

Н- Ньютон;

мкм - микрометр;

мкл - микролитр;

мм- миллиметр;

мл- миллилитр

мг- миллиграм;

А - ампер;

В - Вольт;

Ом - электрическое сопротивленияе;

мСм/см- миллисименс на санитиметр;

сПз - сантипауз;

Па×с - Паскаль на секунду;

H/см²- Ньютон-сантиметр квадрат;

мл/мин - миллилитр в минутах;

КОЕ- колониеобразующие единицы;

мг/м³- миллиграмм на кубометр;

м/с - метр в секунду;

кПа - килопаскаль;

Б - Бел;

Мр/ч - миллирентген в час;

```
мкЗв/ч - микрозиверт в час;
част/см<sup>2</sup> мин- частота на сантиметр в квадрате в минуту;
дм^3- дициметр куб;
Зв/ч - Зиверт/час;
Зв - Зиверт;
н<sup>3</sup>Зв/ч- нанозиверт в час;
н3в - НанозЗиверт;
Бк/м³- Беккерель на кубический метр;
Бк/м<sup>2</sup> - Беккерель на квадратный метр;
Бк/л - Беккерель на литр;
Бк/кг²- Беккерель на килограмм в квадрате;
МГц - миллигерц;
ГГц - гигагерц;
кэВ - электронвольт;
лк - люкс;
Вт/м<sup>2</sup>- ватт на метр в квадрате;
дБА - акустический децибел;
дБС - усредненный децибел;
дБ - децибел;
В/м - вольт на метр:
мА/м-миллиАмпер на метр;
А/м - Ампер на метр;
кВ/м - квадратный метр;
кГц - килогерц;
дм<sup>3</sup>/м<sup>2</sup>- дециметр кубический на метр в квадрате;
нм - нанометр:
кН - килоНьютон:
СКПН - спектральный коэффицент направленного пропускания;
ед. рН - кислотность, водородность;
кг/м<sup>3</sup> - килограмм на кубометр;
мг/кг - миллиграмм на килограмм;
мг/дм<sup>3</sup>- миллиграмм на кубический дециметр;
мкг - микрограмм;
г/дм<sup>3</sup> - грамм на кубический дециметр;
V - измерение скорости потоков;
СКО - среднее квадратичное отклонение;
МЭД - мощность экспозиционной дозы;
ЭД- эквивалентная доза;
МД - мощность дозы;
ЭРОА -эквивалентная равновесная объемная активность;
АПАВ -анионные поверхностно-активные вещества;
СОМО - сухой обезжиренный молочный остаток;
ЛС - лекарственные средства
МИ - медицинские изделия
```